3. Johnson KW, Torres Soto J, Glicksberg BS, Shameer K, Miotto R, Ali M, et al. Artificial intelligence in cardiology. J Am Coll Cardiol 2018;71:2668-79.
5. Kim HS. Decision-making in artificial intelligence: is it always correct? J Korean Med Sci 2020;35:e1.
7. Abràmoff MD, Tobey D, Char DS. Lessons learned about autonomous AI: finding a safe, efficacious, and ethical path through the development process. Am J Ophthalmol 2020;214:134-42.
8. Grzybowski A, Brona P. A pilot study of autonomous artificial intelligence-based diabetic retinopathy screening in Poland. Acta Ophthalmol 2019;97:e1149-50.
9. Kim H, Lee H, Kim TM, Yang SJ, Baik SY, Lee SH, et al. Change in ALT levels after administration of HMG-CoA reductase inhibitors to subjects with pretreatment levels three times the upper normal limit in clinical practice. Cardiovasc Ther 2018;36:e12324.
10. London AJ. Artificial intelligence and black-box medical decisions: accuracy versus explainability. Hastings Cent Rep 2019;49:15-21.
12. Tsakiridis NL, Diamantopoulos T, Symeonidis AL, Theocharis JB, Iossifides A, Chatzimisios P, et al. Versatile internet of things for agriculture: an eXplainable AI approach. In: Maglogiannis I, Iliadis L, Pimenidis E, eds. Artificial intelligence applications and innovations. Cham: Springer; 2020. p180-91.
13. Kim SG, Theera-Ampornpunt N, Fang CH, Harwani M, Grama A, Chaterji S. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions. BMC Syst Biol 2016;10 Suppl 2(Suppl 2):54.
14. The Lancet Respiratory Medicine. Opening the black box of machine learning. Lancet Respir Med 2018;6:801.
17. Keskinbora KH. Medical ethics considerations on artificial intelligence. J Clin Neurosci 2019;64:277-82.